Offshore Training Platform (OTP)

Proposal for

Concept Development

Robert Taylor December 2000

Outline

- Proposal Overview
- OTP Background
 - Requirements
 - Candidate Systems
 - Example OTP Issues
- Proposed OTP Program
 - Phase Tasks, Resources, Schedule
 - Benefits
 - Summary

Proposal Overview

Objective

- Establish feasible concepts and procurement cost of Offshore Training Platform
 - Field carrier landing practice
 - No full stop/arrested landings or take-offs

Deliverables

- Requirements definition
- Analysis of Alternatives for Downselect, including
 - Operational Availability/Downtime
 - Acquisition costs
 - Life cycle costs
- Preliminary Design and Model Scale Tests of Downselected System
- Performers: industry and government

Background

MOB Technology

Next generation hydrodynamic simulation tools

Constructability and Operational performance evaluation tools

Four platform preliminary designs

Key components (connectors, dynamic positioning)

Draft OTP Requirements*

Runway

- Nominal: 1000-1500 feet long by 150 feet wide

— Height: 60 - 90 feet above sea level

Site

- "Ideally" off the coast of the Virginia Capes, or within protected waters inside the NC outer banks/Chesapeake Bay
- 60 150 feet of water

Performance

- Availability ≥ land-based out lying field
- Deck pitch and roll ≤ CV(N)
- Remain predominately at sea, throughout a life cycle of 50 years

* COMNAVAIRLANT MNS- NOV 2000

Major OTP Components

- Platform/Runway
- Stationkeeping System
- Outfitting

OTP Platform Candidates

- Pile-supported structure
 - Single runway
 - Oblique runways
- Semisubmersible
 - Single hull (new construction)
 - Multiple connected hulls (new or excess hulls)
- Barge
 - MegaFloat
 - Lay barge (excess)
 - New construction
- Ship hull
 - CV (mothballed)
 - Single hull tanker (excess)
 - New construction

Pile-supported OTP

- No operational runway dynamics
- Acceptable Ao may require dual/oblique runways
- Water depth limited
- High cost if used in exposed area

Semisubmersible OTP

- Water depth > 80-100 feet
- Minimal runway dynamics
- Low mooring loads
- High cost if new construction

Barge OTP

Launch Barge with Elevated Runway

- MegaFloat only suited to protected sites
- Launch barge dynamics controlled via ballast
- Inexpensive lay barge hull (700-850 ft long); limited availability

Ship Hull OTP

- CV: Low acquisition, high modification and life cycle costs
 - Limited runway length low Ao (runway dynamics)
- Tanker hull:
 - Low acquisition and modification costs; Multiple hull options
 - Dynamics controlled via ballast; FPSO experience base

Example OTP Technical Issues

Vessel and Runway

- Dynamic motions in waves
- Survivability/structural integrity (storms & collisions)
- Runway length
- Fatigue life
- Potential bottom impact for deep draft candidates
- On-site inspection and maintenance
- Reliability based design methodology

OTP Stationkeeping Candidates

- Piles
- Mooring Dolphin
- Single Buoy Mooring (SBM)
- SBM with Dynamic Positioning
- SBM with bow 2-point mooring
 - Manual control
 - Intelligent controller

OTP Single Buoy Mooring Candidates

Example OTP Technical Issues

Stationkeeping

- Survivability
- Fatigue life (hawser/yoke)
- Anchoring
- Dynamic positioning control/reliability
- Connection/Disconnection
- Inspection and maintenance

Example OTP Technical Issues

Outfitting

- Use of GOTS vs. emulation of GOTS with COTS
 - ILS, LSO platform, FLOLS
- Distributed approach control communications
 - Positive link between LSO & Controller
 - Line of sight, antenna design
 - Integration into FAA systems
- Autonomous safety systems to reduce req'd manning
- Bird nesting/congregating alleviation system

OTP Program Issues

Cost

- Acquisition
- Cost of Ownership (Vessel and Stationkeeping)
 - Operating Costs
 - Overhauls/Repairs
 - Indirect Costs (e.g., complimentary storm mooring)

Operational Availability

- Operational Constraints/Flexibility
- Stationkeeping Performance

Regulatory Compliance

- Environmental
- Safety
- Navigation
- Risk
- Applicable Technology and Practice

OTP-Relevant Technology

- Floating Production Storage and Offloading Facilities (FPSO)
 - Design and construction technologies validated by 30 years experience
- Mobile Offshore Base (MOB)
 - Seakeeping models
 - Operational availability model (Ao)
 - Reliability-based design process (Structural integrity, stability, stationkeeping, environmental specification, constructability)
 - Constructability guidance
 - Components (DP control, connectors, anchors)
 - Semisubmersible designs

Offshore Training Platform

Concept
and
Technical Development

Proposed Program

Proposed OTP Program

- Objective
 - Establish feasible concepts and procurement cost of Offshore Training Platform
 - COMNAVAIRLANT MNS- NOV 2000 (draft)
- Two Phases*
 - Concept Exploration
 - Requirements definition
 - Analysis of Alternatives (AoA)
 - Concept Development
 - Preliminary design
 - Verification tests
 - Design integration and documentation

Phase 1: OTP Concept Exploration

1.1 Requirements Definition

- 1.1.1 CONOPS (operations, logistics, manning, maintenance)
- 1.1.2 Functional (length, crosswind, motions, Ao)
- 1.1.3 Metocean & Site (waves, current, wind, seafloor)

1.2 Analysis of Alternatives (AoA)

- 1.2.1 Identify measures of effectiveness (MOE's)
- 1.2.2 Define and assess candidate concepts (total ownership cost, survivability, Ao, safety, environmental compliance, risk)
- 1.2.3 Downselect best candidate system (platform, stationkeeping, outfitting)

Phase 1: OTP Resources

Task	Performer	Cost (\$M)
1.1 Requirements Definition		
1.1.1 CONOPS		
1.1.2 Functional		
1.1.3 Metocean & site specification		
1.2 Analysis of Alternatives		
1.2.1 Identify MOE's		
1.2.2 Define/assess concepts		
1.2.3 Downselect		
Phase 1 Cost		

Phase 2: OTP Concept Development

2.1 Preliminary Designs and Verification Model Tests of Downselected System

- Vessel/runway seakeeping
- Stationkeeping
 - Survival mooring loads
 - Option: Dynamic Positioning (control/power)
- Platform Windfield
- Outfitting

2.2 Design Integration and Documentation

Phase 2: Resources

Task	Performer	Cost (\$M)
2.1 Preliminary Designs and Verification Model Tests		
2.1.1 Platform/Stationkeeping		
2.1.2 Platform Windfield		
2.1.3 Outfitting		
2.2 Design Integration and Documentation		
Phase 2 Cost		

OTP Program Cost

Phase 1	*
Phase 2	* *
Total	

Deliverables	Time
Acquisition cost, Life cycle cost, Operational Availability/Downtime	9 months
Preliminary Design and Physical Model Tests of Selected System	8 months

- * Requirements definition (\$1M) could begin upon completion of Tech Assessment
- * * Phase 2 can start immediately upon completion of phase 1 or it can be deferred to the following FY

Offshore Training Platform Program Schedule

OTP Schedule – Major Tasks

Benefits

- Concept resolves current deficiency in quality Field Carrier Landing Practice (FCLP)
- Concept partially relieves the local community jet noise issue
- Proposed effort provides a system architecture that is operationally effective and ready for procurement
- Proposed effort improves US offshore capability
- Commercial opportunities could leverage Government R&D dollars
- Concept minimizes environmental impact

Summary

- Conclusions
 - An Offshore Training Platform is technically feasible
 - A wide range of <u>candidate platform</u> systems and components exist
 - FPSO and MOB technologies can be applied to develop a low risk and operationally effective OTP
- Recommendation

Proceed immediately with Requirements Definition (Phase 1.1) in FY01

